Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 58(16): 10898-10904, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31361126

RESUMEN

Bimetallic trans-[RuII(tpm)(bpy)(µNC)RuII(L)4(CN)]2+, where bpy is 2,2'-bipyridine, tpm is tris(1-pyrazolyl)methane and L = 4-methoxypyridine (MeOpy) or pyridine (py), was examined using ultrafast vis-NIR transient absorption spectroscopy. Of great relevance are the longest-lived excited states in the form of strongly coupled photoinduced mixed-valence systems, which exhibit intense photoinduced absorptions in the NIR and are freely tunable by the judicious choice of the coordination spheres of the metallic ions. Using the latter strategy, we succeeded in tailoring the excited state lifetimes of bimetallic complexes and, in turn, achieving significantly longer values relative to related monometallic complexes. Notable is the success in extending the lifetimes, when considering the higher density of vibrational states, as they are expected to facilitate nonradiative ground-state recovery.

2.
Inorg Chem ; 57(6): 3042-3053, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29473740

RESUMEN

Despite the large body of work on {Ru(bpy)2} sensitizer fragments, the same attention has not been devoted to their {Ru(py)4} analogues. In this context, we explored the donor-acceptor trans-[Ru(L)4{(µ-NC)Cr(CN)5}2]4-, where L = pyridine, 4-methoxypyridine, 4-dimethylaminopyridine. We report on the synthesis and the crystal structure as well as the electrochemical, spectroscopical, and photophysical properties of these trimetallic complexes, including transient absorption measurements. We observed emission from chromium-centered d-d states upon illuminating into either MLCT or MM'CT absorptions of {Ru(L)4} or {Ru-Cr}, respectively. The underlying energy transfer is as fast as 600 fs with quantum efficiencies ranging from 10% to 100%. These results document that {Ru(py)4} sensitizer fragments are as efficient as {Ru(bpy)2} in short-range energy transfer scenarios.

3.
Phys Chem Chem Phys ; 19(4): 2882-2893, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28074958

RESUMEN

Multi-metallic complexes based on {Ru-Cr}, {Ru-Ru} and {Ru-Ru-Cr} fragments are investigated for their light-harvesting and long-range energy transfer properties. We report the synthesis and characterization of [Ru(tpy)(bpy)(µ-CN)Ru(py)4Cl]2+ and [Ru(tpy)(bpy)(µ-CN)Ru(py)4(µ-NC)Cr(CN)5]. The intercalation of {RuII(py)4} linked by cyanide bridges between {Ru(tpy)(bpy)} and {Cr(CN)5} results in efficient, distant energy transfer followed by emission from the Cr moiety. Characterization of the energy transfer process based on photophysical and ultrafast time-resolved absorption suggests the delocalization of holes in the excited state, providing a pathway for energy transfer between the end moieties. The proposed mechanism opens the door to utilize this family of complexes as an appealing platform for the design of antenna compounds as the properties of the fragments could be tuned independently.

4.
Dalton Trans ; 45(13): 5464-75, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26841245

RESUMEN

Ligand field (LF) states have been present in discussions on the photophysics and photochemistry of ruthenium-iminic chromophores for decades, although there is very little documented direct evidence of them. We studied the picosecond transient absorption (TA) spectroscopy of four {Ru(II)(imine)} complexes that respond to the formula trans-[Ru(L)4(X)2], where L is either pyridine (py) or 4-methoxypyridine (MeOpy) and X is either cyanide or thiocyanate. Dicyano compounds behave as most ruthenium polypyridines and their LF states remain silent. In contrast, in the dithiocyanate complexes we found clear spectroscopic evidence of the participation of LF states in the MLCT decay pathway. These states are of donor and acceptor character simultaneously and this is manifested in the presence of MLCT and LMCT transient absorption bands of similar energy. Spectroelectrochemical techniques supported the interpretation of the absorption features of MLCT states, and DFT methods helped to assign their spectroscopic signatures and provided strong evidence on the nature of LF states.

5.
Dalton Trans ; 45(2): 646-56, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26617197

RESUMEN

This manuscript addresses the synthesis, structural characterization and optical properties of a 1D coordination polymer (CPs) and 2D and 3D Metal-Organic Frameworks (MOFs) obtained from lanthanide metals, 3-hydroxinaftalene-2,7-disulfonic acid (3-OHNDS) and two different phenanthroline derivates as ancillary ligands. The first is a family of 2D compounds with formula [Ln(3-OHNDS)(H2O)2], where Ln = La(), Pr(), Nd() and Sm(). The addition of 1,10-phenanthroline (phen) in the reaction produces 1D compounds with general formula [Ln(3-OHNDS)(phen)(H2O)]·3H2O, where Ln = La(), Pr(), Nd() and Sm(). Finally, the synthesis with 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-TMPhen) as an ancillary ligand results in the formation of the 3D [La(3-OHNDS)(3,4,7,8-TMphen)(H2O)] () compound. The photoluminescence (PL) properties of 1D and 2D compounds were fully investigated in comparison with the 3-OHNDS ligand. One of the most important results was the obtaining of a white-light single-emitter without adding dopant atoms in the structure. With all these results in mind it was possible to establish structure-property relationships.

6.
Nano Lett ; 14(6): 3172-9, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24831202

RESUMEN

Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO's photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 10(4) cm(-1), α520 nm ≈ 2.1 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 1.1 ± 0.3 × 10(4) cm(-1) while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 10(4) cm(-1), α520 nm ≈ 16.9 ± 0.4 × 10(4) cm(-1), and α640 nm ≈ 14.5 ± 0.4 × 10(4) cm(-1). More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO's underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.

7.
Nano Lett ; 13(12): 5777-84, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24245975

RESUMEN

Graphene oxide (GO) is an important precursor in the production of chemically derived graphene. During reduction, GO's electrical conductivity and band gap change gradually. Doping and chemical functionalization are also possible, illustrating GO's immense potential in creating functional devices through control of its local hybridization. Here we show that laser-induced photolysis controllably reduces individual single-layer GO sheets. The reaction can be followed in real time through sizable decreases in GO's photoluminescence efficiency along with spectral blueshifts. As-produced reduced graphene oxide (rGO) sheets undergo additional photolysis, characterized by dramatic emission enhancements and spectral redshifts. Both GO's reduction and subsequent conversion to photobrightened rGO are captured through movies of their photoluminescence kinetics. Rate maps illustrate sizable spatial and temporal heterogeneities in sp(2) domain growth and reveal how reduction "flows" across GO and rGO sheets. The observed heterogeneous reduction kinetics provides mechanistic insight into GO's conversion to chemically derived graphene and highlights opportunities for overcoming its dynamic, chemical disorder.


Asunto(s)
Grafito/química , Compuestos Orgánicos/química , Óxidos/química , Conductividad Eléctrica , Cinética , Fotólisis
8.
J Mol Biol ; 423(2): 198-216, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22796627

RESUMEN

For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Cationes , Transferencia Resonante de Energía de Fluorescencia , Cinética , ARN/metabolismo , Termodinámica
9.
Nanoscale ; 3(8): 3145-51, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21647499

RESUMEN

High quality ZnSe nanowires (NWs) and complementary ZnSe/CdSe core/shell species have been synthesized using a recently developed solution-liquid-solid (SLS) growth technique. In particular, bismuth salts as opposed to pre-synthesized Bi or Au/Bi nanoparticles have been used to grow NWs at low temperatures in solution. Resulting wires are characterized using transmission electron microscopy and possess mean ensemble diameters between 15 and 28 nm with accompanying lengths ranging from 4-10 µm. Subsequent solution-based overcoating chemistry results in ZnSe wires covered with CdSe nanocrystals. By varying the shell's growth time, different thicknesses can be obtained and range from 8 to 21 nm. More interestingly, the mean constituent CdSe nanocrystal diameter can be varied and results in size-dependent shell emission spectra.

10.
J Nanosci Nanotechnol ; 10(11): 7236-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21137905

RESUMEN

We have prepared SrTiO3/BaTiO3 multilayer film on alumina substrates by a sol-gel technique and investigated their response for sensing ethanol vapor. The surface morphology of the films were characterized by atomic force microscope (AFM) showing that the grain size of the films increase up to 40 nm as the annealing temperature increased to 1000 degrees C. The ethanol sensors based on SrTiO3/BaTiO3 thin films were fabricated by applying interdigitated gold electrodes by sputtering technique. The ethanol sensing characteristics of SrTiO3/BaTiO3 thin films were quantified by the change in resistance of the sensors when they were exposed to ethanol. The optimum operating tempearature of these sensors was found to be 350 degrees C. In addition, the film annealed at 1000 degrees C exhibited p-type gas sensing behavior with the best sensitivity of 30-100 for low ethanol concentration in the range of 100-1000 ppm.

11.
Biophys J ; 95(8): 3892-905, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18621836

RESUMEN

Proper assembly of RNA into catalytically active three-dimensional structures requires multiple tertiary binding interactions, individual characterization of which is crucial to a detailed understanding of global RNA folding. This work focuses on single-molecule fluorescence studies of freely diffusing RNA constructs that isolate the GAAA tetraloop-receptor tertiary interaction. Freely diffusing conformational dynamics are explored as a function of Mg(2+) and Na(+) concentration, both of which promote facile docking, but with 500-fold different affinities. Systematic shifts in mean fluorescence resonance energy transfer efficiency values and line widths with increasing [Na(+)] are observed for the undocked species and can be interpreted with a Debye model in terms of electrostatic relaxation and increased flexibility in the RNA. Furthermore, we identify a 34 +/- 2% fraction of freely diffusing RNA constructs remaining undocked even at saturating [Mg(2+)] levels, which agrees quantitatively with the 32 +/- 1% fraction previously reported for immobilized constructs. This verifies that the kinetic heterogeneity observed in the docking rates is not the result of surface tethering. Finally, the K(D) value and Hill coefficient for [Mg(2+)]-dependent docking decrease significantly for [Na(+)] = 25 mM vs. 125 mM, indicating Mg(2+) and Na(+) synergy in the RNA folding process.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Magnesio/farmacología , Conformación de Ácido Nucleico , ARN/química , Sodio/farmacología , Animales , Secuencia de Bases , Difusión/efectos de los fármacos , Cinética , Análisis de los Mínimos Cuadrados , Datos de Secuencia Molecular , ARN/genética , Electricidad Estática , Tetrahymena/química
12.
Biochemistry ; 45(11): 3664-73, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16533049

RESUMEN

The GAAA tetraloop-receptor motif is a commonly occurring tertiary interaction in RNA. This motif usually occurs in combination with other tertiary interactions in complex RNA structures. Thus, it is difficult to measure directly the contribution that a single GAAA tetraloop-receptor interaction makes to the folding properties of a RNA. To investigate the kinetics and thermodynamics for the isolated interaction, a GAAA tetraloop domain and receptor domain were connected by a single-stranded A(7) linker. Fluorescence resonance energy transfer (FRET) experiments were used to probe intramolecular docking of the GAAA tetraloop and receptor. Docking was induced using a variety of metal ions, where the charge of the ion was the most important factor in determining the concentration of the ion required to promote docking {[Co(NH(3))(6)(3+)] << [Ca(2+)], [Mg(2+)], [Mn(2+)] << [Na(+)], [K(+)]}. Analysis of metal ion cooperativity yielded Hill coefficients of approximately 2 for Na(+)- or K(+)-dependent docking versus approximately 1 for the divalent ions and Co(NH(3))(6)(3+). Ensemble stopped-flow FRET kinetic measurements yielded an apparent activation energy of 12.7 kcal/mol for GAAA tetraloop-receptor docking. RNA constructs with U(7) and A(14) single-stranded linkers were investigated by single-molecule and ensemble FRET techniques to determine how linker length and composition affect docking. These studies showed that the single-stranded region functions primarily as a flexible tether. Inhibition of docking by oligonucleotides complementary to the linker was also investigated. The influence of flexible versus rigid linkers on GAAA tetraloop-receptor docking is discussed.


Asunto(s)
Cationes/química , Conformación de Ácido Nucleico , Termodinámica , Secuencia de Bases , Relación Dosis-Respuesta a Droga , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Oligonucleótidos/química , Oligonucleótidos/metabolismo , ARN/química , ARN/metabolismo , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 102(30): 10505-10, 2005 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-16024731

RESUMEN

Docking kinetics and equilibrium of fluorescently labeled RNA molecules are studied with single-molecule FRET methods. Time-resolved FRET is used to monitor docking/undocking transitions for RNAs containing a single GAAA tetraloop-receptor tertiary interaction connected by a flexible single-stranded linker. The rate constants for docking and undocking are measured as a function of Mg2+, revealing a complex dependence on metal ion concentration. Despite the simplicity of this model system, conformational heterogeneity similar to that noted in more complex RNA systems is observed; relatively rapid docking/undocking transitions are detected for approximately two-thirds of the RNA molecules, with significant subpopulations exhibiting few or no transitions on the 10- to 30-s time scale for photobleaching. The rate constants are determined from analysis of probability densities, which allows a much wider range of time scales to be analyzed than standard histogram procedures. The data for the GAAA tetraloop receptor are compared with kinetic and equilibrium data for other RNA tertiary interactions.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , ARN/metabolismo , Secuencia de Bases , Transferencia Resonante de Energía de Fluorescencia , Cinética , Magnesio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...